AC 2008-1776: INTEGRATION OF C INTO AN INTRODUCTORY COURSE IN
MACHINE ORGANIZATION

Eric Freudenthal, University of Texas at El Paso
Eric Freudenthal is a member of the Computer Science faculty at the University of Texas at El
Paso. Dr. Freudenthal's research interests include self-organizing distributed systems, computer
security, and the effective teaching of foundational concepts in computation and science.

Brian Carter, University of Texas at El Paso
Brian Carter is an undergraduate studying Computer Science at the University of Texas at El
Paso.

Frederick Kautz, University of Texas at El Paso
Frederick Kautz is an undergraduate studying Computer Science at the University of Texas at El
Paso.

Alexandria Ogrey, University of Texas at El Paso
Alexandria Ogrey is an undergraduate studying Computer Science at the University of Texas at
El Paso.

Robert Preston, University of Texas at El Paso
Robert Preston is an undergraduate studying Computer Science at the University of Texas at El
Paso.

Arthur Walton, University of Texas at El Paso
Arthur Walton is an undergraduate studying Computer Science at the University of Texas at El
Paso.

© American Society for Engineering Education, 2008



Integration of C into an Introductory Course in
Machine Organization

Abstract

We describe the reform of a fourth-semester course in computer organization in the Computer
Science BS curriculum at the University of Texas at El Paso (UTEP), an urban minority-serving
institution, where Java and integrated development environments (IDEs) have been adopted as
the language and development environment used in the first three semesters of major
coursework. This project was motivated by faculty observations at UTEP and elsewhere' and
industry feedback indicating that upper-division students and graduates were achieving reduced
mastery of imperative languages with explicit memory management (most notably C), scriptable
command line interfaces, and the functions of compilers, assemblers, and linkers.

The pre-reform computer organization course” focused on foundational concepts such as
machine instructions, registers, the random-access memory model, and the generalized fetch-
execute cycle. Projects included assembly-language programming of a Motorola M68HC11
processor installed in a two-wheeled robot. The reformed curriculum, which uses the same
embedded target, integrates the study of C and thus also able to focus on the implementation of
high-level language features and linkage between C and assembly language routines. Student
labs use traditional command-line tools including bash, gcc, gas, 1d, and make.

Lectures include collaborative learning components in which student groups are tasked with the
development and refinement of first C, and then assembly language implementations of program
fragments. Lab assignments utilize both languages and introduce students to command
interpreters, scripting, collaborative development tools, and subroutine linkage of procedural
languages. Assignments are distributed, “handed in,” and grades distributed using the
subversion source code repository.

The reformed course’s outcomes are a superset of the original, with extensions including (1)
understanding of C and its runtime environment, (2) parse trees, and (3) implementation of
dynamic memory management.

Context

Object-oriented design is accepted as a primary programming model® and many computer
science departments have adopted Java as their principal teaching language in many lower-
division courses. Furthermore, Java programs are commonly developed, compiled, and executed
within seamless IDEs. As a result, students who have attended a third-semester course in data
structures may neither be exposed to the relationship between memory addressing and variable



allocation nor the process of compilation and linkage prior to attending a course in computer
organization.

We describe a reform to an upper-division course in computer organization whose previous
curriculum was chosen when a non-garbage-collected procedural language was used in
introductory courses. The prerequisite skills list for the pre-reform course listed mastery of
“pointers and dynamically allocated memory” at the synthesis level.

After the adoption of Java as the principal teaching language at UTEP, procedural languages
with explicit memory management were principally relegated to a language survey course that
compare abstractions provided by various languages. C permits explicit pointer arithmetic and
thus has semantics reflecting the behavior of the underlying memory system that appears arcane
and inordinately complex when viewed through the lens of formal language abstractions.
Despite Java’s syntactic similarity to C, faculty teaching upper-division systems-oriented courses
and potential employers of our graduates observed that students primarily trained to program in
Java have increased difficulty understanding and composing programs in C. Faculty at other
institutions have made similar observations.'

Java’s wide adoption by industry was facilitated by its close syntactic similarity to C. Our
course takes the opposite approach and leverages students’ familiarity with Java’s syntax to
teach C and, in turn, uses this knowledge to bootstrap an understanding of the concepts
underlying assembly-language programming. C has semantics similar to byte-addressable
storage and provides a syntactically clearer expression of variable manipulation and pointer
manipulation in assembly-level programs. C’s inter-procedural linkage and memory model are
sufficiently simple to permit exploration of implementation of the high-level language features
such as dynamic memory management, composite types, and recursive functions.

The Course

The lecture course, which includes a closed lab section, begins with an introduction to the key
components and concepts undergirding computer architecture, including byte-addressable
memory, registers, the ALU, opcodes, the program counter, and the fetch-execute model.
Arithmetic machine instructions are introduced simultaneously in C (nominally using Java
syntax) and assembly language in a manner that illustrates the role of a compiler in managing
storage and translating operations.

Prior to attending this course, most students have only developed programs using an IDE. Early
labs introduce these students to a POSIX shell (bash), a set of command-line tools such as
subversion (which is used to disseminate and collect assignments), a keyboard-centric editor
(Emacs), and explicit compilation and linkage (gcc, 1d, etc.). Early programming assignments
are in C. These early assignments exclusively manipulate scalar variables and exploit language



features that will be familiar to a Java programmer and expose students to modular program
designs that exploit global symbols and separate compilation. A compilation management tool
(make) is introduced as a solution to the problem of managing compilation and linkage of
multiple source files. Makefiles are required for lab submissions. The students were visibly
excited when they observed that their finished product was a binary program that, like
commercially acquired programs, could be executed on its own, without the assistance of an
IDE.

Integer representations (signed and unsigned) and C’s bitwise logical operators (&, |, <<, >>) are
introduced early in the lecture course. For students to gain proficiency with these concepts and
constructs, lab projects include integer-to-ASCII conversion functions in C for multiple radixes.
Arithmetic machine instructions and related mnemonics (as a programmer convenience) are
introduced in the lecture course.

Direct addressing, labels, and pseudo-ops that reserve memory are presented as a solution to the
problem of managing multiple scalar variables. Cooperative class exercises include the design
of program fragments in assembly language that implement arithmetic functions that students
first express using C’s algebraic syntax. Manually generated parse trees are introduced as a
technique for mechanically detecting sub-expressions, determining evaluation order, and
managing temporary variables.

We employ pointer arithmetic and arrays in C first to illustrate the use of C pointers and then to
motivate the role of indexed addressing modes. Students translate code snippets that implement
vector operations in C to assembly in cooperative class exercises. These cooperative groups
frequently generate solutions that illustrate important peephole and reduction-of-strength
optimizations which are identified and discussed by the instructor.

Prior to attending this course, students have only been exposed to stacks as an abstraction useful
for traversing graphs introduced while studying common data structures and algorithms. In this
course, stacks are introduced as a solution to the problem of storing variables whose lifetime is
equal to the activation of a subroutine, such as return addresses, parameters, and local variables
which are accessed using indexed addressing modes. Cooperative class exercises include the
design of recursive subroutines in assembly language and lab assignments include C programs
that call assembly language subroutines.

Allocation of memory within composite types (structs in C) is examined and compared to Java
classes. Both cooperative class exercises and subsequent lab projects manipulate linked lists
using programs written in both C and assembly language. Dynamic memory management is
discussed and a lab exercise includes the construction of a slab memory allocator and functions
that manipulate linked lists. The course utilizes an embedded controller with memory-mapped
I/O. To build familiarity with the cross-development environment, students initially cross
compile a C program that illuminates a memory-mapped LED. One subsequent lab consists of a



timing loop to control the LED’s brightness using pulse-width modulation and thus provides an
opportunity to explore factors contributing to execution time.

Interrupts are introduced as a mechanism to manage asynchrony and provide notification of the
passage of time. A later lab uses clock interrupts to drive state machines that first pulse-width
modulate an LED and later drive motors on a small robot. In this case, the interrupt handler,
written in assembly language, serves as a trampoline to a C service routine.

Assessment

Anecdotal reports from undergraduate peer leaders indicate that students attending the reformed
course are more highly motivated by their increased understanding of how “real systems” work
and have expressed dramatically increased interest in a course on compilation. Results from
midterm examinations, final examinations, and lab projects indicate a strong understanding of
both the traditional and extended course outcomes. A teaching and lab manual has been
developed with the assistance of student volunteers who attended intermediate versions of the
reformed course; the manual is freely available for extension.*

Related Work

Recent trends in computer systems organization have included advances in development and
debugging environments for students and architecture-first (a.k.a. “breadth-first”) curricula that
introduce computer systems organization in a first-semester * course.™’

A rich variety of simulation environments suitable for teaching assembly language have been
developed.* ¢ These educational simulators graphically portray the execution of instructions
and the contents of memory and registers in a manner that facilitates the understanding of the
execution of assembly-language programs. In contrast, our course examines the implementation
of high-level language features. Thus, it is useful to have an appropriate debugging environment
that is suitable for understanding programs composed of modules written both in machine
language and C in a uniform manner. Furthermore, our course exposes students to both native
and cross-development contexts and we need tools suitable for both. To that end, we employ
gdb, the GNU Project Debugger,” which supports both source- and machine-level debugging of a
variety of local and remote targets that can be traced or simulated. gdb provides this uniform
interface in a mode that appears to be well-suited for our students’ preparation and needs:
students are initially introduced to gdb while debugging simple programs written exclusively in
C and thus become competent using its command-line interface which provides familiar
debugger functionality for debugging familiar high-level language constructs. gdb’s uniform
interface for examining memory and controlling execution by symbol name or address using C-
like syntax provides students with a simultaneous (and, in this context, intuitive) view of the



execution of a program translated from a high-level language as a sequence of understandable
machine instructions.

Ironically, our work was inspired by the recent work of Yale Patt in developing and promoting
architecture-first (a.k.a. “breadth-first™) curricula®® that ground students in underlying
architecture and machine language concepts prior to introducing high-level language
programming in C. This approach has the advantage of providing students with an intuitive and
continuous understanding of hardware and software constructs that are obscured by the now-
common imperative- or object-first curricula.”® We view our approach as complementary since
it exploits understanding gained from prior study of high-level (and even object-oriented)
languages to facilitate the understanding of C and its runtime environment.

Bibliography

' Dewar, Robert and Sconberg, Edmond. Computer Science Education: Where are the Software Engineers of
Tomorrow. STSC Crosstalk. January 2008.

* Computing Curricula 2001 Report. The Joint Task Force on Computing Curricula of the IEEE Computer
Society and of the ACM. ACM, 2001. http://www.computer.org/education/cc2001/report.

? Teaching Computer Architecture with a Computer-Aided Learning Environment: State-of-the-Art Simulators.
Yehezkel, Cecile, Yurcik, William, and Pearson, Murray. Society for Computer Simulation (SCS) Press, 2001.
Proc. International Conference on Simulation and Multimedia in Engineering Education (ICSEE).

* Combining learning strategies and tools in a first course in computer architecture. Teller, Patricia, Nieto,
Manuel, Roach, Steve. : IEEE, 2003. Proc. 2003 workshop on Computer architecture education: Held in
conjunction with the 30th International Symposium on Computer Architecture.

> Teaching computer organization/architecture with limited resources using simulators. Wolffe, Gregory, Yurcik,
William, Osborne, Hughe, and Holliday Mark. 2002. Proc. 33rd SIGCSE technical symposium on Computer
Science.

® Cassel (Boots), Lillian, Holliday, Mark, Kumar, Deeepak, Impagliazzo, John, Bolding, Kevin, Pearson,
Murray, Davies, Jim, Wolffe, Gregory, Yurcik, William. Distributed expertise for teaching computer
organization & architecture. ACM SIGCSE. 2001, Vol. 33, 2.

’ Free Software Foundation. GNU Project Debugger. http://sourceware.org/gdb.

8 Education in Computer Science and Computer Engineering Starts with Computer Architecture. Patt, Yale. ACM,
1996. proc. 1996 Workshop on Computer Architecture Education. ACM.

° Patt, Yale and Patel, Sanjay. Introduction to Computing Systems. McGraw Hill, 2004. ISBN 0-07-121503-4.



