
AC 2008-2502: UNIFYING LABORATORY CONTENT OF A DIGITAL SYSTEMS
AND COMPUTER ARCHITECTURE CURRICULUM THROUGH HORIZONTAL
AND VERTICAL INTEGRATION

Steve Naumov, Purdue University Calumet
Steve Naumov graduated in 2007 with highest distinction from Purdue University Calumet with a
B.S. in Computer Engineering and minor in applied mathematics. He intends on pursuing a Ph.D.
in electrical engineering from the University of Wisconsin – Madison. His research interests
include high performance computer architecture, digital system verification, and computer
architecture education. Along with initiating the accomplishments described in this paper, he has
held two consecutive internships at Intel Corp. as a validation engineer. Contact him at
naumov82@gmail.com.

William Obermeyer, Purdue University Calumet
William J. Obermeyer is an undergraduate computer science student at Purdue University
Calumet and anticipates graduating with highest distinction in May 2008 with a Bachelor’s of
Science in Computer Science, Associates of Arts in History, and minor in applied mathematics.
He intends on obtaining a graduate degree in mathematics from Purdue University – Calumet to
pursue his passions of education with a career in academia. Additionally, William has over ten
years software development and engineering experience. Contact him at
obermeyer@calumet.purdue.edu.

Rahul Singhal, Purdue University Calumet
Rahul Singhal is pursuing a Master’s of Science in Electrical Engineering at Purdue University
Calumet and intends on continuing studies at the University of Wisconsin – Madison. His
research interests include high performance microprocessors and energy-efficient digital systems.
Rahul has held two internships, one with Freescale Semiconductor and the other with Intel
Corporation. Rahul graduated with highest distinction from Purdue University Calumet with a
Bachelor’s of Science in Electrical Engineering in December 2006. Contact him at
r.singhal17@gmail.com.

Eduardo Garcia, Purdue University Calumet
Eduardo Garcia is employed as controls and automation engineer for ArcelorMittal Steel
Corporation in Portage, Indiana. He was a recipient of the Indiana Louis Stokes Alliance for
Minority Participation (LSAMP) Fellowship award in the summer of 2003. Eduardo graduated
from Purdue University Calumet with a degree in electrical engineering with a minor in applied
mathematics. Contact him at garcia.eddie@gmail.com.

Nasser Houshangi, Purdue University Calumet
Dr. Nasser Houshangi is professor of electrical and computer engineering at Purdue University
Calumet. His research interests include robotics, intelligent control, and multi-sensor integration.
His teaching interests include microprocessor and computer architecture, industrial automation,
adaptive control, and robotics. Nasser received a doctoral degree in electrical engineering from
Purdue University in 1990. Contact him at hnasser@calumet.purdue.edu.

© American Society for Engineering Education, 2008

Unifying Laboratory Content of a Digital Systems and Computer

Architecture Curriculum through Horizontal and Vertical Integration

Abstract

This paper describes the application of horizontal and vertical integration to unify the digital

systems and computer architecture curriculum for the Department of Electrical and Computer

Engineering at Purdue University Calumet. An enhanced set of twelve laboratory assignments

and five design projects resulted from performing the integration. Horizontal integration was

achieved by providing a consistent presentation of concepts across two computer architecture

laboratory courses while simultaneously providing students the necessary skill-set for developing

a successful career as a computer engineer. Vertical integration was achieved by interweaving

common technical theories and skills to establish interdependence among all digital system and

computer architecture laboratory coursework. The restructured laboratory sequence provides a

cohesive educational experience and significant exposure to concepts, design methodologies, and

software tools ubiquitous in the semiconductor and computer industry.

1. Introduction

Three digital systems and computer architecture courses are administered sequentially by the

Department of Electrical and Computer Engineering at Purdue University - Calumet. The first

course, ECE 370: Digital Systems – Logic Design, is a three credit hour course with a two hour

lecture component and a three-hour laboratory component. The course introduces students to

combinational and sequential logic design principles through the use of a hardware description

language (HDL) and reconfigurable hardware. The second course, ECE 371: Microprocessor

Systems, is a three credit-hour course organized into a two-hour lecture and one, three-hour

laboratory session. This course introduces students to the fundamentals of computer

organization and design. The third course, ECE 464: Computer Architecture and Organization,

is a four credit-hour course with a three-hour lecture and one, three-hour laboratory section. This

course builds on the fundamental computer organization and design concepts taught in ECE 371

by examining advanced concepts in computer architecture.

A proactive undergraduate student who completed the three course sequence observed a stable

platform provided by the ECE 370 laboratory course, however, he noticed a disjoint learning

experience for the two computer architecture laboratory courses. Examining the structure,

approach, concepts, and tools used to administer the laboratory sections for both courses

indicated a need for improvement. A more effective ECE 371 laboratory would incorporate the

use of an architectural simulator and reconfigurable hardware, establish an increased emphasis

on dataflow and structural digital system modeling, and expand the instruction set support of the

RISC microprocessor designed in the laboratory course. The observations revealed greater

concerns with the goals of the ECE 464 laboratory content. Deviating from lecture, the

requirement of designing an IEEE 802.3 network repeater created a difficult learning experience

for students enrolled in ECE 464. Through the Department of Electrical and Computer

Engineering senior design course, a team was independently assembled to formulate and

implement solutions to improve the two computer architecture laboratory sections of the three

course computer engineering sequence focusing on hardware.

This paper describes content developed for the laboratory which requires students to complete an

enhanced set of twelve laboratory assignments and five design projects. Figure 1 illustrates the

application of a horizontal and vertical integration philosophy to unify the digital systems and

computer architecture laboratory curriculum.

Figure 1: Horizontal and Vertical Integration Applied to the Digital Design and Computer

Architecture Computer Engineering Curriculum

In broadening the customary interpretation, horizontal integration is achieved by a consistent

presentation of topics across lecture and laboratory sessions and an alignment with industry

expectations. A consistent lecture and laboratory presentation allows for a focus on

strengthening the skill-set of the student in preparation for a successful engineering career. This

can be accomplished through significant exposure to concepts, design methodologies, and

software tools that are ubiquitous in the semiconductor and computer industry. Vertical

integration is accomplished through interweaving common technical theories and skills and

coordinating ECE 371 and ECE 464 laboratory sessions with ECE 370. The ECE 370 laboratory

pedagogy provides an ideal platform to establish interdependency among the three courses.

The sections that follow describe the tools employed to complete the prescribed laboratories.

Additionally, a philosophy, schedule, brief overview, and evaluation of both laboratory courses

are provided. However, the scope of this paper does not provide the proper forum to deliver the

details of each laboratory experiment or project. Thus, for comprehensive insight into the details

of the laboratory courses, please contact the primary author of this paper or visit

http://www.calumet.purdue.edu/ece/Houshangi-new.html for a link to the web pages for both

ECE 371 and ECE 464.

2. Tools Employed in the Laboratories

The MIPS R2000 ISA was chosen to administer the laboratory assignments to complement the

material presented in the required textbooks for ECE 371
1
 and ECE 464

2
. The list of hardware

and software tools chosen to facilitate ECE 371 and ECE 464 based on the MIPS R2000 ISA

selection consist of an architectural simulator, hardware description language (HDL), HDL

development environment, FPGA development platform, and software tools applied for

verification. Table 1 indicates the specific materials and tools selected to facilitate the laboratory

experiments and projects for both courses based on the categories mentioned above.

Category Tools Selected

Instruction Set Architecture(ISA) MIPS R2000

Architectural Simulator MIPS Assembler & Runtime Simulator (MARS)

Hardware Description Language (HDL) VHDL

HDL Development Environment Altera Quartus II

FPGA Development Platform Altera DE2 Development and Education Board

Verification Software Tools SPIM Simulator and mifWrite

Table 1: Materials and Tools Selected to Facilitate the Laboratory Courses

The MIPS Assembler and Runtime Simulator (MARS)
3
 was chosen to explore the MIPS R2000

ISA. MARS possesses a functional user interface, instruction-set extensibility, and is available

through Internet download as regularly maintained, open-source software.

Maintaining the use of VHDL and the Altera Quartus II CAD toolset were natural choices to

facilitate both laboratory courses because they are the primary tools utilized in ECE 370.

Students have regular access to four computer laboratories equipped with licensed versions of

the Altera Quartus II software package. Alternatively, students can download a six-month free

license of Altera’s Quartus II Web-Edition
4
 software. Additionally, the department upgraded

their use of the Altera UP-2 Development Board

to Altera’s latest educational FPGA platform,

the DE2 Development and Education Board. The Cyclone II FPGA along with the DE2 board

provides additional hardware resources and functionality.

To facilitate system level verification across both laboratory sections, the SPIM
5
architectural

simulator (another MIPS simulator) was utilized in conjunction with a locally modified version

of the mifwrite
6
software tool

3. Microprocessor Systems Laboratory (ECE 371)

The new ECE 371 laboratory schedule is comprised of twelve enhanced laboratory assignments

that span fifteen weeks. While the ECE 371 lecture content represents a first exposure to design

concepts, the laboratory experiments place a higher degree of emphasis on implementation to

incrementally enhance students’ design capabilities. Therefore, students are provided the

majority of schematic diagrams and explanations necessary to complete the required tasks. In

applying this pedagogical approach, the academic goals for ECE 371 have been reformulated as

indicated below.

• Utilize an architectural simulator to design, implement, and debug small assembly

language programs to gain understanding of the MIPS ISA

• Define and apply dataflow, structural, and behavioral modeling to implement

fundamental logic circuits utilized in microprocessor microarchitectures

• Implement, verify, synthesize, and program complex digital systems utilized in

microprocessor microarchitectures onto reconfigurable hardware

• Implement and verify a five-stage scalar pipelined RISC microprocessor

microarchitecture utilizing a bottom-up engineering design methodology

To support these goals, the laboratory schedule shown in Table 2 for ECE 371 was developed.

Lab Duration Objectives

1 1 Week
introduce MARS and MIPS instruction encoding, format, types,

registers and conventions, and arithmetic/logic related programs

2 1 Week
design small programs using memory reference, control flow, pseudo-

instructions, and subroutines

3 1 Week
introduce VHDL modeling techniques via a 2-to-1 mux, 2-to-4 decoder,

and modified full adder

4 2 Weeks implement generic muxes, decoders, and a look-ahead carry unit

5 1 Week

implement generic comparator and sign-extension unit. Also,

implement an 8-bit carry look-ahead adder and hex-to-7-segment

decoder

6 2 Weeks design 32-bit arithmetic logic unit

7 1 Week synthesize an 8-bit arithmetic logic unit on Altera DE2 board

8 1 Week implement D flip-flop, generic register, register file, ROM and RAM

9 1 Week synthesize 8x8-bit register file on DE2 board

10 1 Week implement fetch, decode, and execute stages

11 1 Week implement memory and write-back stages, and pipelined control unit

12 2 Weeks integrate pipe stages and perform microprocessor verification

Table 2: The ECE 371 Laboratory Schedule and Objectives

Laboratory 1 – Laboratory 2

Laboratory assignments one and two utilize a workbook developed by the authors of this paper

to familiarize students with the MIPS R2000 ISA using MARS. This workbook-based approach

allows students to explore MARS and MIPS throughout both assignments. Students investigate

MIPS instruction encodings, formats, data types, the register set, register naming conventions,

addressing modes, subroutines, and pseudo-instructions. Additionally, students write small

programs that exercise instructions which span the three major classifications:

arithmetic/logical, memory reference, and control flow. Overall emphasis is placed on the subset

of instructions supported by the microprocessor designed throughout both laboratory courses.

Laboratory 3 – Laboratory 5

Laboratory assignments three, four, and five accomplish two goals. First, the experiments offer a

comprehensive review of digital systems modeling in VHDL. Initially, dataflow, structural, and

behavioral architectural models are examined. However, since behavioral modeling hides

crucial gate-level implementation details that facilitate learning, students are required to use

dataflow and structural modeling when implementing their designs throughout the semester. The

second goal of these experiments is to enable students to implement and unit-test the

fundamental combinational logic circuits required to construct their microprocessor.

To accomplish these goals, students implement a 2-to-1 multiplexer, full adder, and 2-to-4 binary

decoder using a dataflow architecture model for laboratory assignment three. Assignment four

builds on these three components to hierarchically and parametrically implement larger

multiplexers and decoders. Additionally, students use the full adder as the basis to hierarchically

implement an 8-bit carry look-ahead addition subtraction unit. Finally, laboratory five requires

the implementation of a parametric signed comparator, sign/zero extension unit, and seven-

segment decoder/driver. These implementation goals allow for a focus on hierarchically

integrating and verifying the complete microprocessor datapath and control during the later part

of the semester, facilitating a bottom-up engineering design flow.

Laboratory 6

With comprehensive VHDL experience, students are ready to progress to laboratory assignments

six and seven. Laboratory assignment six requires the design of the first major microprocessor

datapath component, the arithmetic logic unit (ALU). The ALU supports ten, 32-bit operations,

outputs three status flags (V, C, Z), and is decomposed into three major sub-components. The

Boolean Logic Unit (BLU) is parametrically designed and provides support for AND, OR, XOR,

and NOR bitwise logical operations. The Add/Subtract Unit (ASU) implements a carry look-

ahead architecture and facilitates the required addition and subtraction operations of the ALU.

Finally, the Logarithmic Shift Unit (LSU) supports all logical and arithmetic shift operations and

has a logarithmic architecture.

Laboratory 7

Laboratory assignment seven is the first of two assignments that provide students tangible

experience in hardware prototyping using a modern reconfigurable hardware platform. Using

the Altera DE2 Board, students synthesize and program an 8-bit ALU, as shown in Figure 2, onto

the Cyclone II FPGA.

Figure 2: The 8-bit Arithmetic Logic Unit (ALU) FPGA System

The 8-bit ALU maintains the organization and functionality of the 32-bit ALU implemented in

assignment six, however, its datapath is scaled down to provide an easier I/O interfacing

experience with the Altera DE2 board. The ALU interfaces with the user through the DIP

switches, debounced push buttons, and seven-segment display units on the DE2 Board. In

addition to the interfacing and device programming, students evaluate and optimize the ALU’s

area and timing characteristics.

Laboratory 8

Laboratory assignment eight changes the focus from combinational to sequential circuit design,

primarily emphasizing the implementation of sequential circuits and storage elements necessary

to construct the microprocessor datapath. Students begin by implementing a D flip-flop, use the

D flip-flop to implement a generic, parallel-load register, and then utilize both components along

with several multiplexers and decoders to implement the architectural register file (ARF). The

ARF is similar to the one described by Patterson & Hennessy
1
and supports thirty-two, 32-bit

registers that are read asynchronously and written synchronously on the positive edge.

After implementing the ARF, students use Altera’s altsyncram mega-function in association with

the Quartus II Mega-Function Wizard Tool to implement the instruction ROM (I-ROM) and data

RAM (D-RAM). The altsyncram mega-function provides students with parameterized true dual-

port read/write RAM and ROM components for the Cyclone II FPGA. The properties of the I-

ROM and D-RAM components implemented by the students and utilized in the microprocessor

datapath are shown in Table 3.

 Width Width Address Capacity Clocks Inputs Outputs

I-ROM 32-bits 32-bits 8-bits 256 Words 1 (Read) Registered Registered

D-RAM 32-bits 32-bits 8-bits 256 Words 1 (R/W) Unregistered Unregistered

Table 3: Altera Megafunction Properties for the Instruction and Data Memories

Laboratory 9

Providing students additional experience in synthesis and FPGA programming, laboratory

assignment nine specifies an ARF, as shown in Figure 3, suitable to program and interface onto

the Cyclone II device.

Figure 3: The Architectural Register File (ARF) FPGA System

Like the 8-bit ALU FPGA system of assignment seven, this ARF is a scaled down replica of the

32 x 32-bit ARF designed in laboratory eight that also interfaces to the debounced push buttons,

DIP switches, and seven-segment displays. Unlike the ALU, synthesizing and programming the

ARF onto the FPGA gives students exposure to programming a synchronous digital system.

This laboratory specifies that students use the on-board 27MHz crystal oscillator for the system

clock. Similar to laboratory seven, students evaluate and optimize the ARF’s area and timing

characteristics. Unlike laboratory seven, however, students focus on maximizing the clock

frequency of the ARF system since it is a sequential digital system.

Laboratory 10 – Laboratory 12

Students conclude the fifteen week ECE 371 laboratory course by completing assignments ten

through twelve. These assignments require students to design, implement and verify the

datapath and control units for a five-stage (instruction fetch, instruction decode, execution,

memory, and write-back) scalar pipelined MIPS microprocessor similar to the one described in

the Patterson & Hennessey
1
 textbook. To assemble the datapath, students utilize all of the

designs implemented throughout the semester. The resulting microarchitecture of the

microprocessor implements a scalar five-stage pipeline, a Harvard style idealized (no caches)

memory organization, a hardwired (combinational) control unit, and a one-cycle delay slot for all

branch and jump instructions. Additionally, the microprocessor supports an instruction set

comprising twenty integer instructions from the MIPS R2000 ISA as indicated in Table 4.

add and beq j nor ori slt srav sub xor

addi andi bne lw or sllv slti srlv sw xori

Table 4: The MIPS R2000 ISA Subset Supported by the ECE 371 Microprocessor Datapath

Two modifications to the standard MIPS R2000 ISA were made to reduce the complexity of the

hardware and facilitate synthesis on the Cyclone II device. The first modification reduced the

virtual address size of the MIPS R2000 ISA from 32-bits to 8-bits. The second modification

converted all byte offsets to word offsets to complement the word addressability of the I-ROM

and D-RAM components.

Verification of the entire microprocessor system was accomplished through the use of an

assembly language test-bench suite. The test-bench suite is comprised of several MIPS programs

that fully stress the microprocessor microarchitecture. The programs attempt to read and write to

all thirty-two registers and exercise the twenty supported instructions. The goal of the testbench

suite was not to perform a logical task, but rather to perform a series of operations whose result

can be observed in D-RAM memory. To apply the test-suite to the simulation, the required

Altera memory initialization files (.MIF) for the I-ROM and I-RAM memories of the

microprocessor were produced by SPIM and mifWrite.

4. Computer Architecture and Organization Laboratory (ECE 464)

The new laboratory curriculum for ECE 464 consists of five design projects that build upon the

ECE 371 laboratory goals. Contrasting ECE 371’s laboratory teaching philosophy, the ECE 464

laboratory provides students the forum to assume a higher degree of design responsibility.

Having acquired the necessary implementation skills, students are expected to traverse the entire

digital systems design flow in order to successfully complete each project. Using this design-

directed teaching style, the newly defined academic goals for the ECE 464 laboratory section are

shown below.

• Apply behavioral and register-transfer level (RTL) digital system modeling in the context

of larger, more complex digital systems found on modern microprocessors

• Expose students to the design complexities that arise when implementing a

comprehensive instruction set

• Provide practical experience with the implementation details associated in designing

digital systems that implement advanced microarchitectural algorithms

• Expose students to the logic required to implement fundamental microarchitectural

concepts that inhibit pipelined processor performance

To support these goals, the laboratory schedule shown in Table 5 was developed for ECE 464.

Project Duration Objective

1 3 Weeks increase instruction support to thirty-one instructions

2 3 Weeks forwarding and pipeline interlocks

3 3 Weeks implementation, verification, and synthesis of final microprocessor

4 3 Weeks 2-way set-associative, pipelined, least-recently-used instruction cache

5 3 Weeks generic 2–level adaptive branch predictor/branch target buffer

Table 5: The ECE 464 Laboratory Schedule and Objectives

Design Project 1

Design project one provides students the opportunity to review the microprocessor

implementation completed in the ECE 371 laboratory. This project requires students to include

support for an additional eleven MIPS R2000 integer instructions into the base ECE 371 datapath

implementation. The results of this project increase the total number of instructions supported

by the microprocessor to thirty one, as indicated in Table 7.

add beq bltz* jalr* nor sllv srav sw

addi bgez* bne jr* or slt srl* xor

and bgtz* j lui* ori slti srlv xori

andi blez* jal* lw sll* sra* sub
* Indicates additional instructions incorporated into ECE 464 microprocessor datapath

Table 6: Thirty-One MIPS R2000 Integer Instructions as the ISA Subset

To accomplish project one, students must incorporate additional components into the datapath as

well as modify the main control unit (MCU) and the pipelined control unit (PCU), two

components initially implemented in laboratory assignment ten of ECE 371. The PCU

synchronizes the control signals generated by the MCU and delivers them to each pipeline stage

in lockstep with each instruction. The MCU and PCU generate control signals that are routed to

the datapath based on the current state of the pipeline.

Design Project 2

Design project two provides students with a practical understanding of the fundamental

techniques utilized to improve microprocessor performance. Students design, implement, and

verify the forwarding logic unit (FLU) and hazard detection unit (HDU). The FLU monitors the

state of the instructions within each pipeline stage, detects read-after write (RAW) data

dependencies, and generates the select signals of the two bypass multiplexers shown in Figure 4.

Figure 4: Datapath of the Bypass Multiplexers in the Instruction Decode Pipeline Stage

The FLU, in combination with the bypass multiplexers in the instruction decode pipeline stage,

selects the youngest operands provided to the ALU, thus eliminating pipeline stalls and therefore

increasing performance. Similar to the FLU, the HDU detects and resolves RAW hazards in the

microprocessor pipeline. The HDU detects a load instruction in the execution pipeline stage and

a consumer instruction in the instruction-decode stage. When this condition occurs, the HDU

disables the instruction-fetch pipeline register for one cycle and deactivates all control signals

that modify microprocessor state.

Design Project 3

The third design project requires students to integrate, implement, and verify the enhancements

made in the first two design projects. Completing the three design projects through the first nine

weeks of the semester results in a microprocessor microarchitecture that supports thirty-one

integer MIPS R2000 instructions, implements a scalar five-stage pipeline, contains idealized (no

caches) Harvard style memories, a hardwired (combinational) control unit, a one-cycle delay slot

for all branch and jump instructions, supports subroutine calls, incorporates full operand

bypassing, and implements pipeline interlocks. Overall, students gain a more intimate

understanding of the intricacies in the microprocessor pipeline while incorporating performance-

enhancing features. Additionally, after completing the first three design projects, students

broaden their design experience by relying on their increased implementation skills gained from

completing ECE 370 and ECE 371.

Design Project 4

Design project four requires students to design a blocking two-way set associative pipelined

instruction cache with a least-recently-used (LRU) replacement strategy. Each cache way

contains three arrays: the tag array, the valid-bit array, and the data array. Additionally, an LRU

array tracks the least-recently accessed way within a particular set. All the arrays are

implemented using the Altera altsyncram Mega-Function and are configured as dual-port RAMs.

The read/write sequencing is done by a simple idealized cache controller module implemented as

a Mealy finite state machine. Table 7 shows the instruction cache parameters specified for

design project four.

Instruction Address Width 16 bits

Number of Sets 32

Cache Line Size 64 bits (2, 32-bit MIPS Instructions)

Word Offset Size 1 bit

Tag Size 10 bits

Index Size 5 bits

LRU Bits 1

Total Cache Size (only data) 4,096 bits (512 Bytes)

Total Cache Size 4,832 bits (604 Bytes)

Table 7: Pipelined Instruction Cache Parameters

This project provides students with an opportunity to practically extend the cache memory

concepts which were introduced in ECE 371 and further investigated in ECE 464 lecture.

Enhancing the performance of the cache through pipelining stresses that this technique is not

only used to improve performance of microprocessors but generally applicable when designing

high performance digital systems. Additionally, pipelining the cache gives students insight into

possible methods that enhance instruction fetch throughput when increasing the depth of the

pipeline. Lastly, the pipelined cache provides a serious exposure to signal synchronization issues

in designing systems that are heavily pipelined.

Design Project 5

The last design project specifies that students design a parameterized two-level adaptive branch

prediction system
7
 utilizing a pattern history table (PHT), a branch history shift register (BHSR),

saturating counters, and a direct-mapped branch target buffer
8
 (BTB). The system parameters

and default values are summarized in Table 8.

Parameter Default Description

INSTR_ADDRESS_WIDTH 8 Number of bits used for the PC

BTB_PHT_ADDRESS_WIDTH 4 Number of bits used to access the BTB and PHTs

NUM_PREDICTION_BITS 2 Number of bits for the n-bit saturating counters

NUM_GLOBAL_HISTORY_BITS 2 Number of global history bits for the BHSR

Table 8: Branch Predictor Generic Parameters and Default Values

The branch predictor design project provides a good balance of design complexity for the

undergraduate level student. Similar to cache design concepts, dynamic branch prediction forms

a major part of the ECE 464 lecture content. Designing a branch predictor exposes students to

advanced techniques utilized in modern microprocessors for increasing performance.

Parametrically defining the branch predictor allows students to analyze the prediction algorithm

through instantiating multiple instances of the system and investigating the prediction accuracy

and performance tradeoffs.

5. Evaluation and Future Considerations

The computer architecture laboratory sequence discussed in this paper has been accepted as the

official curriculum by the Department of Electrical and Computer Engineering and has been

administered for one academic year. Unifying the digital systems and computer architecture

laboratory courses with the approach described in this paper has been proven successful
9
, which

validates the positive feedback provided by students that have completed ECE 371 and ECE 464.

Though based on a limited sample space, student commentary indicated a higher appreciation of

lecture topics derived from the comprehensive laboratory schedule. A more accurate quality

assessment will be provided through student surveys and focus groups as of the spring 2008

semester. Data will be gathered and analyzed to assess the effectiveness of the curriculum as a

much larger and more diverse set of students complete the new laboratory curriculum and

provide their feedback.

The experiments and projects for the ECE 371 and ECE 464 laboratories should be considered

dynamic in order to maintain a contemporary computer architecture laboratory curriculum. This

philosophy suggests implementing technological enhancements such as migrating to the use of

the more industry-prevalent Verilog as opposed to VHDL for administering the projects in both

laboratory courses.

The first year of teaching experience provided insight into possible scheduling options. One

option is to reposition the first two experiments of the ECE 371 laboratory into the lecture course

as homework assignments. This would lighten the ECE 371 laboratory schedule of twelve

projects in fifteen weeks and provide three alternatives to occupy the newly available time. The

first alternative could allow a review of additional digital systems design concepts like the

modeling of finite state machines in the chosen HDL. Secondly, these adjustments could allow

time to incorporate logic into the ECE 371 microprocessor to interface to the Altera DE2 board,

thus offering students additional device programming and synthesis experience. Finally, the first

three design projects of ECE 464 could be moved into ECE 371 to provide for further laboratory

curriculum flexibility.

The alterations mentioned above regarding the ECE 464 laboratory schedule allow for the

exploration of more advanced microarchitectural concepts and algorithms. Areas of focus can

include a study of deep, superscalar, and out-of-order pipelines and their associated hardware

structures. Projects can be developed that require students to design and implement components

such as a register renaming unit, reservation stations, or even a reorder buffer. Additionally,

ECE 464 can more comprehensively incorporate the use of the Altera DE2 board by having

students experiment with the interfacing of their microprocessor with more elaborate I/O devices

such as VGA, keyboard, and mouse as a means for exploring interrupts and exception handling.

6. Conclusion

A disjoint learning experience was observed in the two course computer architecture laboratory

curriculum offered at Purdue University - Calumet. The efforts of the undergraduate senior

design team represented in this paper resulted in an enhanced set of twelve laboratory

assignments and five new design projects. These projects comprehensively reinforce digital

systems and computer architecture concepts through use of industry-standard software tools in

the design, implementation, verification, and synthesis of a RISC microprocessor, pipelined

instruction cache, and parametric branch predictor. Utilizing horizontal and vertical integration,

the resulting curriculum collectively unifies lecture and laboratory content of the three course

digital design and computer architecture sequence, creates interdependency through the

computer engineering coursework, and increases student employability within the semiconductor

and computer industry. In preserving the intent of this paper, the technical nature of this

curricula indicates the content be continuously reviewed for effectiveness with an open mind

toward revision in the future.

Bibliography

1. Patterson, David A., Hennessy, John L. Computer Organization and Design: The Hardware/Software Interface.

3rd Ed (Revised). Morgan Kaufmann, Inc., San Francisco, CA, 2007.

2. Patterson, David A., Hennessy, John L. Computer Architecture: A Quantitative Approach. 4th Edition. Morgan

Kaufmann Publishers, Inc., San Francisco, CA, 2007.

3. Vollmar, K., Sanderson, P: MARS: An Education-Oriented MIPS Assembly Language Simulator, ACM

SIGCSE Bulletin, v.38 n.1, March 2006.

4. Download Center. Altera Corp. available at: https://www.altera.com/support/software/download/sof-

download_center.html. [accessed: 01/11/2008].

5. Larus, James. SPIM: A MIPS32 Simulator. Computer Science Department, University of Wisconsin –Madison.

available at: http://www.cs.wisc.edu/~larus /spim.html [accessed: 11/25/2006].

6. Loomis, John. ECE 595c Notes. Electrical and Computer Engineering Department, University of Dayton.

available at: http://www.johnloomis.org/ece595c/notes/notes.html. [accessed: 01/11/2008].

7. Yeh, T.Y., Y.N. Patt: Two-Level Adaptive Training Branch Prediction. Proceedings, 24th Annual International

Symposium on Microarchitecture, 1991, Pages. 51- 61.

8. Perleberg, C.H.; Smith, A.J.; Branch Target Buffer Design and Optimization, IEEE Transactions on Computers,

Volume 42, Issue 4, April 1993. Pages: 396 – 412.

9. Thompson, T., Herr, D., Brown, S., Traylor, R., Fiez, T.; Educational Design, Evaluation, & Development of

Platforms for Learning, 34th ASEE/IEEE Frontiers In Education, 2004.

